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A SEMIANALYTICAL THERMAL STRESS MODEL FOR THE
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Abstract. In this paper we describe a semianalytical approach to computing the temperature
and thermal stress inside a III-V compound grown with the Czochralski technique. An analysis of
the growing conditions indicates that the crystal growth occurs on the conductive time scale. A
perturbation method for the temperature field is developed for an arbitrary crystal profile using the
Biot number as a (small) expansion parameter. The zeroth order solution is one-dimensional in
the axial direction. Explicit solutions are obtained for a cylindrical and a conical crystal. Under
typical growth conditions, a parabolic temperature profile in the radial direction is shown to arise
naturally as the first order correction. As a result, the thermal stress is obtained explicitly and its
magnitude is shown to depend on the zeroth order temperature and Biot number. Both the axial
temperature gradient and crystal profile are shown to be important for controlling thermal stress
and defect density. Some issues relevant to growth conditions are also discussed.
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1. Introduction. Directional solidification methods are widely used for growing
large industrial sized crystals. Among them, the Czochralski (Cz) method is the
most popular technique for growing crystals used by the semiconductor and related
industries. By dipping a small seed crystal into a pool of molten material in the
crucible and carefully controlling the heat balance inside the grower, a large crystal
can be grown by pulling the crystal away from the melt in a slow and steady fashion.
The pulling rod and the crucible are normally rotated in opposite directions during
the growth period. Delicate control is often needed to maintain the crystal quality,
and a slight change of the growth conditions may result in defect formation inside
the crystal. With care, a single crystal with low defect density can be obtained
routinely when the size of the crystal does not exceed a critical value. For a more
detailed account of the Cz and other techniques, we refer the readers to the extremely
informative handbooks by Hurle [16, 17].

Due to the complex nature of the thermal, structural, and dynamic coupling of
the molten material, the crystal, the crucible, the gas chamber, and other parts of the
grower, considerable efforts have been devoted to laboratory experiments and to mod-
eling and simulation of the growth environment over the past several decades. As a
result, there exists an extensive literature, mostly in engineering fields. These studies
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cover a wide spectrum of areas, from decoupled one- or two-dimensional simulations
to fully coupled three-dimensional computations; see, e.g., [4, 5, 16, 17, 18, 26, 27, 29].
Most of the studies rely heavily on computer simulation since the fully coupled system
cannot be solved otherwise. These investigations have generated useful information
including temperature distribution, crystal-melt interface shape, and melt flow pat-
terns inside the crucible. By comparison, much less attention has been paid to the
coupling of defect modeling and field variables even though significant progress has
been made in identifying main factors that determine the formation of defects [31].

In this paper, we present a semianalytical approach for studying the temperature
field inside the crystal and the related thermal stress. It is believed that defect
formation can be related to an excessive thermal stress above some critical value;
see, e.g., [1, 11, 13, 19, 29, 33, 34] and the references therein. Therefore, analysis
of the growth factors that determine the stress level will be extremely useful for
crystal growers. The stress analysis requires that a particular crystal structure be
specified, and we have chosen the ZnS structure shared by the type III-V binary
semiconductors. Even though the basic mathematical structure remains the same for
any III-V compound, we will focus on indium antimonide (InSb) for the rest of the
paper. InSb has the narrowest bandgap and highest temperature mobility of the III-V
binary compound semiconductors. Because of these properties, InSb is widely used
in both magnetic field detectors and infrared sensors. A review of these properties
can be found in Micklethwaite and Johnson [24].

The primary reason for focusing on InSb is that it is exceedingly difficult to
grow with the Cz technique mainly because of its small critically resolved shear stress
(CRSS). It is known experimentally that attempting to grow InSb in a cylindrical
profile with the Cz technique produces crystals with an unacceptable defect density,
contrary to the growth of more common crystals such as silicon, where low defect
density crystals can be grown in a cylindrical shape. Thus it is often an art to find
the most suitable profile of the solidifying crystal by carefully varying the furnace
temperature and the rate that the crystal is extracted [23]. To determine the influence
of various resulting crystal profiles (i.e., axial variations of the lateral surface or crystal
shapes) on the stress experienced within the crystal, we assume that the profile of
the crystal is an arbitrary function of the axial displacement while allowing the solid-
liquid interface to be driven by a Stefan condition and a compatibility condition at
the solid-liquid-gas triple point.

By examining the physical process and parameter values of the growth environ-
ment closely, we are able to identify the main features associated with InSb crys-
tals. In particular, if the heat flux from the melt is uniform across the crystal-melt
interface, the temperature field will be dominated by the lateral flux through the
crystal-gas surface, characterized by a nondimensional Biot number. The value of
the Biot number is small under the growth conditions for InSb crystals, suggesting
an asymptotic expansion of the solution in terms of this parameter. Much of the
asymptotic framework discussed in this paper has appeared elsewhere in the litera-
ture [3, 14, 20, 35, 36, 37, 38, 39]. For example, Kuiken and Roksnoer [20] assumed
a pseudosteady solid-liquid interface to obtain an accurate temperature distribution
of a Si crystal grown with the floating-zone technique. Their solution takes the form
of an expansion in terms of the Peclet and Nusselt numbers of the crystal, giving
a solution valid for slender crystals grown in conductive heat transfer environments.
By specifying an externally defined solid-liquid interface shape these authors avoided
using a Stefan condition to evolve the interface. An asymptotic analysis that con-
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sidered the melt was undertaken by Brattkus and Davis [3], where the geometry
allowed an expansion in terms of the aspect ratio of the solidification cell. Young and
Chait [36] considered a system driven by surface tension and more recently Young
and Heminger [37, 38] have utilized a small aspect ratio to study the growth of single
crystal fibers.

This paper blends the asymptotic expansion with the plane strain approximation
to examine thermal stress inside the crystals. It contrasts significantly with the above
references by assuming a radially independent heat flux from the melt that avoids a
boundary layer analysis around the solidification front, greatly simplifying the asymp-
totics. Any angular dependence is minimized by the rotation of the seed and crucible,
and the experimental evidence of an almost flat interface for Cz grown InSb crys-
tals [23] suggests that the flux from the melt is likely to be largely independent of the
radius. This is also supported in the literature [8, 9]. On the other hand, if the heat
flux is radially dependent then the same asymptotic framework applies, but there will
be a boundary layer solution similar to that in [3, 36] or [20] on the crystal side to
match the asymptotic solutions.

While the details of the motion of the melt are ignored, the crystal-melt and
crucible-melt heat transfer coefficients are estimated from the Ekman layer and nat-
ural convection submodel, respectively. As the crystal grows two situations are in-
vestigated. In the first, the flux is constant so that the model is more accurately a
description of the solid in a directional solidification technique. In the second, the flux
is calculated through an essentially zero-dimensional model for the melt. This enables
the heat flux from the melt to be influenced by some of the crucible and operating
parameters of the Cz process.

In the fully unsteady case, the asymptotic expansion results in a system of one-
dimensional equations and the thermal stress can be obtained explicitly in an analyt-
ical form, under the plane strain assumption. In the pseudosteady limit this reduces
to the classical result that the stress is proportional to the concavity of the tempera-
ture field [22, 34]. This also extends the work of [19], where stress was obtained for a
cylindrical crystal with a flat crystal-melt interface. The pseudosteady solutions are
contrasted with the unsteady solutions for cylindrical and conical crystals justifying
the pseudosteady approximation for the growth parameters of InSb used in this paper.
A detailed description of the pseudosteady approximation with respect to Cz growth
can be found in the paper by Derby and Brown [10]. Other examples of the use of
the pseudosteady approximation can be found elsewhere [14, 35].

Compared to most of the previous work using asymptotic or numerical methods,
this study moves a step further by coupling stress calculation with the asymptotic
field temperature solution and deriving an explicit form for the stress. Furthermore,
formulated in a nondimensional form, the dependence of the stress level on the Biot
number is useful for crystal growers when larger crystals are grown. Since the Biot
number is proportional to the product of the heat transfer coefficient and the mean
crystal radius, it is obvious that one should try to reduce the heat flux via the lateral
surface when a crystal of larger radius is grown. In addition, the explicit nature of
the stress solution enables us to identify the effect of crystal profile (shape) as well
as the crystal size (radius) on the stress. More importantly, obtaining an explicit
formulation for the stress allows us to apply other techniques such as optimal control
methodologies to efficiently search for better growth conditions. A simplified model
for the heat exchange between the gas flow and the crystal is used to clarify the
presentation. However, the asymptotic solution developed here is still valid if a more
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Fig. 1. Shown is a typical crystal at some time t during a growth run with a newly solidified
portion at z = S(x, t). The coordinate system is chosen so that the top of the crystal remains at
z = 0 and the solidification front grows downward in the positive z direction. The radial profile is
given by R(z) and the crystal length is S(x, t). Finally, the heat transfer coefficient hgs may be a
function of the axial position z.

realistic model for the gas is incorporated. More detailed discussion related to the
growth conditions for InSb will be given in sections 2 and 5.

The rest of the paper is organized as follows. In section 2, we will present the
mathematical model and dimensional analysis. Asymptotic solutions are given in sec-
tion 3. Thermal stress is discussed in section 4. In section 5, results are presented for
both pseudosteady and unsteady cases. We conclude the paper with a brief summary
and discussion on future directions in section 6.

2. Mathematical model and dimensional analysis. The basic assumptions
made in this study are (1) the crystal is axis-symmetric; (2) the heat exchange between
the crystal and gas along the lateral surface of the crystal is a constant; (3) the heat
exchange between the crystal and melt along the crystal-melt interface is uniform; (4)
the mean crystal radius is small compared to its length; (5) thermal stress is elastic
and computed under a plane strain assumption. Some of the assumptions are made
to simplify the derivation, and others are made based on previous study of similar
problems or observations made by us and engineers we have been collaborating with.
We will revisit some of the assumptions in section 6.

Figure 1 illustrates the geometry of a typical crystal. The coordinate system is
fixed to the top of the growing crystal at z = 0, the final length of the crystal is
denoted Z, and the crystal radius is denoted R(z). The growth starts with a seed
crystal with radius of order R0 = 0.5 cm and length Z0 = 3 cm. The crystal grows
outward in a slowly developing cone, eventually reaching a radius R(Z) � 5 cm after
a length Z � 30 cm. A crystal can take 10–20 hours to grow. Thus, at the outset we
make two observations. First, the crystal growth is characterized by a large aspect
ratio. Second, it is evident that any transients in the system, unless caused by rapidly
changing boundary conditions, are very slow. These two features will be used to
derive our eventual model.
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Within the crystal Ω, the temperature T (x, t) satisfies the heat equation

ρscs
∂T

∂t
= ks

∑
j

∂2T

∂x2
j

, x ∈ Ω, t > 0,(1)

where ρs, cs, and ks, respectively, are the density, specific heat, and thermal conduc-
tivity of the crystal solid phase. The lateral surface of the crystal is denoted Γg and
is subjected to cooling from the circulating chamber gases and from radiative heat
losses. Although radiation is not insignificant, for simplicity we model both effects
through a simple Newtonian cooling law

−ks
∂T

∂n
= hgs(T − Tg), x ∈ Γg.(2)

Here we assume that the heat transfer coefficient hgs incorporates both convective
and radiative heat transfer (the latter via linearization). The top of the crystal is
fixed at z = 0, where we also invoke a Newtonian cooling law

(3) ks
∂T

∂z
= hch(T − Tch),

in the case that the radius at z = 0 is assumed to be nonzero. Here hch repre-
sents the heat transfer coefficient for the seed-chuck connection and Tch is the chuck
temperature.

The crystal-melt interface is denoted ΓS and is where T = Tm, the melting
temperature. The interface of the phase transition is thus implicitly defined from the
temperature field. Explicitly we denote the melting isotherm by

z − S(x, t) = 0, x ∈ ΓS .(4)

The motion of the interface of the phase transition is governed by the Stefan condition

(5) ρsL |�vn| = ks
∂T

∂n

∣∣∣∣
z→S−

− ql,n,

where |�vn| is the speed at which the interface moves in the direction of the outward
unit normal n, L is the latent heat, and ql,n is the heat flux from the melt normal to
the interface.

Figure 2 illustrates the triple point (TP) where the solid, liquid, and gas come
into contact and the solid-liquid interface moves at a velocity �vn = vnn. If ∂S/∂t
denotes the speed of the interface in the k direction, then

(6) |�vn| = vn =
∂S

∂t
k ◦ n.

Still referring to Figure 2, the profile (shape) of the crystal R(z) is determined by the
motion of the TP given by

(7)
∂R

∂t

∣∣∣∣
z=S

= tan(θ − θc)
∂S

∂t

∣∣∣∣
r=R

,

where θc is the contact angle formed by the wetting fluid (melt) and the crystal and θ
is the angle formed by the meniscus with the vertical z-axis. This expression simply
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Fig. 2. Schematic diagram of the meniscus z = ζ(r) with capillary height ζ0, defined on
R(S) ≤ r ≤ Rc, where R(S) is the radius of the crystal at the interface, θc is the contact angle, and
Rc is the radius of the crucible. The motion of the TP is determined by the advancing interface S,
the speed at which the melt falls vm, and the pull rate applied to the crucible vp.

states that the crystal prefers to grow in the direction defined by the contact angle.
The motion of the advancing interface S, the advancement due to the pulling rate,
and the motion due to the loss of melt determine the vertical position of the triple
junction ζ0 via

(8)
dζ0
dt

= vp + vm − ∂S

∂t
,

where vm is the rate at which the melt-gas surface drops given by

(9) vm =
ρsR

2

ρlR2
c

∂S

∂t

from the law of mass conservation and vp is the pulling rate at which the crucible is
dropped to ensure that the crystal-melt interface remains at the surface of the liquid.

We note that properly it is necessary to close the model by relating growth in
S to that in R, i.e., solving (7). To do this we must model the crystal withdrawal
from the crucible, the formation of the meniscus, and the coupling of S and R. It has
been shown in [32] that the growth angle is related to the capillary height ζ0 for large
Bond number growth. In principle, crystals with desirable shapes can be grown by
adjusting the pulling rate, which determines the meniscus angle θ in (7). Therefore, if
we are not interested in the dynamics, we can impose a geometry R(z) on the model.
This approach has the advantage of allowing us to investigate the thermal fields and
associated stresses that develop for a particular observed shape.

Note that for cylindrical crystals the capillary height does not change throughout
the growth cycle. Therefore (8) can be simplified as

(10) vp =
∂S

∂t
− vm.
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Table 1

A summary of the thermophysical and typical growth parameters of InSb.

Data Symbol Value
Growing properties

Mean crystal radius R 0.03 m
Final crystal length Z 0.30 m
Characteristic growth rate v 6.9 × 10−6 m/s
Ambient gas temperature Tg 600 K

Solid properties at T = Tm

Melting temperature Tm 798.4 K
Density ρs 5.64 × 103 kg/m3

Thermal conductivity ks 4.57 W/m K
Heat capacity ρscs 1.5 × 106 J/m3 K
Latent heat of fusion L 2.3 × 105 J/kg

Heat transfer coefficients
Crystal-gas hgs 1 − 4 W/m2 K

2.1. Typical scales in InSb crystal growth. Although it is possible to treat
the three-dimensional case above, it is somewhat unwieldy, and hence we instead
attempt to simplify the model first. Table 1 specifies a typical set of thermophysical
and process data. Consider a time t, after any initial growth transient, when the
crystal has length S onto which a thin layer of crystal of radius R has just solidified.
Utilizing (1) and the characteristic values in Table 1, the conduction of heat across
a crystal cross-section and the time taken to grow a length R of crystal have the
following time scales:

tcond � R
2
ρscs
ks

= 3.0 × 102 s, tgrow � R

v
= 1.7 × 104 s.

Thus, the conductive time scale is typically much shorter than that for growth (i.e.,
over similar length scales). The growth time scale for the entire crystal is still longer
and given by t � Z/v. It is over this latter growth time scale that significant changes
in either the radius or area occur related to significant changes in the cooling capacity
and heat capacity, respectively.

Therefore, apart from imposed rapid changes in the growth (e.g., at the start of
the process and at the end as the crystal is withdrawn from the melt), all other thermal
changes are slow and occur on the growth time scale. Since there is no process change
that occurs on the conductive time scale, the process is likely to be pseudosteady on
the growth related time scale.

Turning now to the thermal gradients, the magnitude of the radial variation in the
temperature is maximized at the lateral surface where the crystal comes into contact
with the surrounding gas. From (2) and Table 1,∣∣∣∣∂T∂n

∣∣∣∣
Γg

≤ hgs

ks
(Tm − Tg) � 175 K/m.

The magnitude of the axial temperature gradient is maximal at the interface of the
phase transition where the Stefan condition (5)–(6) is satisfied. Assuming a nearly flat
interface, which will be justified later, an estimate for Tz|S− is obtained by neglecting
the heat flux in the liquid phase∣∣∣∣∂T∂z

∣∣∣∣
S−

� ρsLv

ks
= 850 K/m.
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The sides of the crystal are predominantly vertical and the crystal-melt interface
predominantly horizontal. Thus, we see that the vertical gradients dominate, at least
in some neighborhood of the crystal-melt interface. However, we must note that the
vertical gradients arise mostly due to heat loss to the cooling gases, which occurs in
the radial direction. Since the cooling influences are weak, this implies that a long
crystal is needed to get a significant temperature drop along the crystal length and
suggests we will need to scale the axial and radial directions differently.

2.2. Nondimensionalization. The above discussion motivates our scaling be-
low. For simplicity, we start by assuming an axisymmetric model, although the crystal
cross-section is not in fact circular. The other assumptions that we make here, for
simplicity only, are that the heat transfer coefficient hgs and the gas temperature Tg

are constant. In reality there will be local variations along the crystal surface, but in
any case these require a more detailed analysis of the gas flows in order to be properly
evaluated.

We define the Biot number by

(11) ε =
hgsR

ks
,

and using the parameter values in Table 1, we find ε � 0.026 � 1. We seek an
asymptotic expansion in terms of ε. With this in mind we adopt the following scalings:

r = Rr̂, R(z) = RR̂(ẑ), ε1/2z = Rẑ, ε1/2S(r, t) = RŜ(r̂, t̂),

ΔT = Tm − Tg, St =
L

csΔT
, T = Tg + ΔTΘ, t =

StR
2
ρscs

ksε
t̂.

Here variables with hats (ˆ) are the nondimensional ones. In terms of these variables
the heat equation in the crystal (1) becomes

ε

St
Θt =

1

r
(rΘr)r + εΘzz, x ∈ Ω, t > 0,(12a)

with boundary conditions (2)–(4) becoming

−Θr + εΘzR
′(z) = ε

[
1 + ε(R′(z))2

]1/2
Θ, x ∈ Γg,(12b)

Θz(0, t) = δ(Θ(0, t) − Θch),(12c)

Θ = 1, x ∈ ΓS ,(12d)

where δ = ε1/2hch/hgs. The hats have been dropped for brevity. The crystal-melt
interface advances according to the Stefan condition (5)–(6) which in nondimensional
coordinates becomes

Θz −
1

ε
SrΘr = (γ + St) , γ =

qlR

ε1/2ksΔT
,(12e)

where ql and γ are the dimensional and nondimensional heat fluxes in the liquid across
the crystal-melt interface in the axial direction. Note that we have chosen the rate of
solidification to define the characteristic time scale. The Stefan number St gives the
ratio of this characteristic solidification time scale to the time scale associated with
conductive heat loss through the crystal side surface. Based on the parameter values
in Table 1, we have St � 4.3, suggesting that the conductive scale is small and the
temperature inside the crystal is steady on the growth time scale.
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2.3. Growth conditions. Under general growth conditions the process may be
pseudosteady. However, near the end of the process, transient influences may become
important. To investigate both possibilities two situations are considered.

1. The growth of the crystal is characterized by an externally chosen value of ql
(or the nondimensional flux γ), constant for the duration of the simulation.

2. Using the temperature of the crucible Θc as a control parameter, ql is deter-
mined implicitly by an effective heat transfer coefficient of the crucible to the
crystal through the melt.

In the second scenario a simple model is used to couple the heat fluxes inside the
grower based on the fact that the system is almost at thermal equilibrium. The
nondimensional liquid temperature satisfies

(13a)
φ

λ St

d

dt

[(
Tg

ΔT
+ Θl

)
Vl

]
= −μλ2 hsl

hgs
A(Θl−1)−μ

hgl

hgs
(Ac−λ2A)Θl+

hcl

hgs
Al(Θc−Θl)

with Θl(0) = 1 and Θc(0) chosen so that Θ′
l(0) = 0. The detailed derivation is given

in the appendix, and from expression (47c) the γ in (12e) becomes

(13b) γ = ε1/2
hsl

hgs
(Θl − 1).

3. Perturbation solution. We now seek to approximate the scaled model in
section 2.2 via a straightforward perturbation expansion. In turn, this perturbation
model will form the basis for a numerical solution. Since St is O(1) under the current
growth conditions it is retained as a parameter. Equations (12a) and (12b) strongly
suggest that the temperature Θ is independent of r to leading order. If true, then the
crystal-melt interface S is also independent of r to leading order, and we see that this
is consistent in (12e) with the growth being driven primarily by the vertical gradients.
These observations motivate the following approximations:

Θ ∼ Θ0(z, t) + εΘ1(r, z, t) + ε2Θ2(r, z, t) + · · · ,
S ∼ S0(t) + εS1(r, t) + ε2S2(r, t) + · · · .

(14)

We substitute them into the scaled model, expand in powers of ε, simplify, and collect
terms. The resulting field equations to first order are

1

St
Θ0,t − Θ0,zz =

1

r

∂

∂r
(rΘ1,r), x ∈ Ω, t > 0,(15a)

1

St
Θ1,t − Θ1,zz =

1

r

∂

∂r
(rΘ2,r), x ∈ Ω, t > 0,(15b)

where the boundary condition on the lateral surface becomes

(Θ1,r −R′Θ0,z + Θ0)(R(z), z, t) = 0,(16a) (
Θ2,r −R′Θ1,z +

1

2
R′2Θ0 + Θ1

)
(R(z), z, t) = 0.(16b)

Continuing this procedure for the remaining conditions, at the top of the crystal one
has

Θ0,z(0, t) = δ(Θ0(0, t) − Θch),

Θ1,z(r, 0, t) = δΘ1(r, 0, t),
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and at the solid-liquid interface

Θ0(S0(t), t) = 1,(17a)

(S1Θ0,z + Θ1)(r, S0(t), t) = 0.(17b)

Finally, the evolution of the interface is governed by

S′
0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0,(18a)

S1,t(r, t) =

(
Θ1,z + S1Θ0,zz +

Θ2
1,r

Θ0,z

)
(r, S0(t), t), S1(r, 0) = 0,(18b)

where we have used (17b) to eliminate the S1,r term. We note that by expanding the
solid-liquid interface into the same asymptotic series and deriving the above equa-
tions, we have implied that the interface will adjust its shape to avoid a temperature
singularity at the solid-liquid-gas triple point. We also note that Z0 is the nondimen-
sional length of the seed. In addition there will be symmetry conditions at r = 0 for
Θk, Sk, k = 0, 1.

3.1. Resolution of the zeroth order model. Integrating (15a) once and im-
posing the symmetry condition Θ1,r = 0 at r = 0, we have

r

2

(
1

St
Θ0,t − Θ0,zz

)
= Θ1,r.

Applying (16a) at r = R gives the zeroth order problem

1

St
Θ0,t − Θ0,zz =

2

R
(R′Θ0,z − Θ0) , 0 < z < S0(t), t > 0,(19a)

Θ0,z(0, t) = δ(Θ0(0, t) − Θch), t ≥ 0,(19b)

Θ0(S0(t), t) = 1, t ≥ 0,(19c)

S′
0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0, t > 0,(19d)

with an initial condition Θ0(z, 0) = f(z) ≤ 1 compatible with the boundary condi-
tions. Provided that R ∈ C1([0, S0]), the Stefan problem will have a unique solution.
For details see Friedman [12].

Equation (19a) is parabolic and involves only the heat fluxes along the length of
the crystal. With the chosen expansion we see that at zeroth order the temperature
field has no radial dependence. In addition, we can see that the thermal gradients,
as discussed previously, are caused by cooling effects at the surface. In section 5.1 we
solve the time dependent system (19) on 0 < z < S0(t) for a suitable set of initial
conditions. Also notice expression (19d) illustrates that the chosen time scale balances
the growth. The appearance of St > 1 in (19a) suggests that thermal transients in
the bulk of the crystal are not as important as the growth transient. This is explored
further in section 5.1. The limit as St → ∞ leads naturally to a pseudosteady leading
order model in which time dependency enters the thermal model only through the
growth; i.e., we also solve as the pseudosteady limit

Θ0,zz +
2

R
(R′Θ0,z − Θ0) = 0, 0 < z < S0(t), t > 0,(20)

with (19b)–(19d). Expression (20) together with (19b)–(19d) is analogous to a Hele–
Shaw problem, and it is well known that in one dimension solutions of the Stefan
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Fig. 3. To the left is the evolution of the length of a cylindrical crystal grown using the
pseudosteady approximation according to (22). For the simulations, Θch = 0, R0 = 1, Z0 = 0.162
(3 cm), and ε = 0.026 (hgs = 4W/m2K). The position S0 = 1.8 at t = 1 corresponds to a crystal
length of 33 cm grown in 13.6 hours, typical for Cz grown InSb [24]. The curve on the right is
S′

0(t) = 0, which characterizes the balance of the heat flux from the melt with the loss of heat at the
chuck. The quantity λ = k tanh kS0 increases with S0.

problem (19) converge to solutions of Hele–Shaw as St → ∞. However, the conver-
gence is not uniform and the intermediate asymptotic behaviors are different [30].

We start by exploring two special cases for which an analytic solution may be
computed to the pseudosteady model.

3.1.1. Constant radius crystals. In this case we take R(z) = R0, and (20)
becomes simply

Θ0,zz −
2

R0
Θ0 = 0, 0 < z < S0(t), t > 0,

with boundary conditions (19b) and (19c). Solving for Θ0 gives

Θ0(z, t) =
k cosh kz + δ sinh kz + δΘch sinh k(S0 − z)

k cosh kS0 + δ sinh kS0
, k2 =

2

R0
.(21)

The crystal grows at a rate governed by the Stefan condition (19d)

S′
0(t) = k

k sinh kS0 + δ cosh kS0 − δΘch

k cosh kS0 + δ sinh kS0
− γ, S0(0) = Z0.(22)

The left-hand side of Figure 3 shows the time dependence of the position of the
interface and therefore the length of the crystal as a function of time for various
combinations of δ and γ. The right-hand side details the balance between these
two parameters. The initial position of the curve is determined by the length of
the seed Z0. If the γ, δ pair is chosen above the curve S′

0(t) = 0
(
γ > γmax(δ) =

k2(λ0 + δ)/(k2 + δλ0), λ0 = k tanh kZ0,Θch = 0
)
, the seed melts back. If we are

below the curve, then S0(t) increases without bound and the curve asymptotically
approaches γ = k. For small S0, (22) gives S′

0 = k2S0−γ+δ(1−Θch)(1−δS0)+O(S2
0)

and for large S0, the growth rate is asymptotically S′
0 = k − γ.

3.1.2. Conical crystals. One source of ambiguity in the constant radius model
above is the need to specify the chuck temperature and heat transfer coefficient. In
the case of a conical crystal, which is closer to reality, this ambiguity is less prominent.
We assume R(z) = R0 + αz, where arctanα � O(1) is one-half the opening angle of
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the crystal when using nondimensional units. This assumption is predicated on the
condition that the dimensional version of α � O(

√
ε), and it is easily verified using

the data in Table 1. Substituting for R(z) we solve

Θ0,ηη +
2

η
(Θ0,η − Θ0) = 0, R0 < α2η < R0 + αS0, t > 0,(23a)

Θ0,η = αδ(Θ0 − Θch), α2η = R0, t ≥ 0,(23b)

Θ0 = 1, α2η = R0 + αS0, t ≥ 0,(23c)

where α2η(z) = R0 +αz. The resulting solution takes the form of linear combinations
of modified Bessel functions

(24) Θ0(η, t) =
Wfg(η, η(0)) − αδ [Vfg(η, η(0)) − ΘchVfg(η, η(S0))]

Wfg(η(S0), η(0)) − αδVfg(η(S0), η(0))
,

where

Wfg(x, y) =

∣∣∣∣f(x) g(x)
f ′(y) g′(y)

∣∣∣∣ , Vfg(x, y) =

∣∣∣∣f(x) g(x)
f(y) g(y)

∣∣∣∣ ,
f(η) =

I1(
√

8η)
√
η

, g(η) =
K1(

√
8η)

√
η

.

The corresponding expression for the growth rate is

S′
0(t) =

1

α

Vf ′g′(η(S0), η(0)) + αδ [Wfg(η, η(0)) − ΘchWfg(η, η(S0))]

Wfg(η(0), η(S0)) − αδWfg(η(S0), η(S0))
−γ, S0(0) = Z0.

Two limiting cases are considered. To compare with the cylindrical case one sets
R0 = 1 and expands (24) in a power series of α yielding

(25a) Θ0(z, t) =
cosh

√
2z

cosh
√

2S0

{
1 − α

8

[
6(z − S0) +

√
8(z2 − U) tanh

√
2z

−
√

8(S2
0 − U) tanh

√
2S0

]}
+ O(α2)

with

(25b) U =
3

2
+ 2δ

(
1 − Θch cosh

√
2S0

)
.

Expressions (25) should be compared to (21). Since for a cone R0 � 1, a simple form
of (24) can be obtained by expanding the solution in R0 as

(26) Θ0(z, t) =

√
S0

z

I1(
√

8z/α)

I1(
√

8S0/α)

[
1 +

R0

α

(√
2

αz

I0(
√

8z/α)

I1(
√

8z/α)

−
√

2

αS0

I0(
√

8S0/α)

I1(
√

8S0/α)
− 1

z
+

1

S0

)]
+ O(R2

0).

The solution for conical crystals is more complicated, and we will defer the dis-
cussion to section 5.
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3.1.3. Comments. This model for a one-dimensional temperature variation in
the axial direction is not new. For example, it has been used in [32] but without formal
justifications. What we have done here, by deriving it using asymptotic expansion, is
to allow the reader to realize the applicability and restrictions of the model.

3.2. Radial variations: Resolution of the first order model. Having
solved the zeroth order model, to give Θ0 and S0, we can resolve the radial varia-
tions in temperature, which occur at first order in Θ1, and also consider the shape
of the crystal-melt interface as it evolves, through S1. From resolution of the zeroth
order model we have

Θ1,r =
r

2

(
1

St
Θ0,t − Θ0,zz

)
,

and integrating with respect to r we have

Θ1(r, z, t) = Θ1(0, z, t) +
r2

4

(
1

St
Θ0,t − Θ0,zz

)
,

or

(27) Θ1(r, z, t) = Θ0
1(z, t) + r2Θ1

1(z, t),

where Θ0
1(z, t) = Θ1(0, z, t) and using (19a)

(28) Θ1
1(z, t) =

1

2R
(R′Θ0,z − Θ0).

The function Θ1
1(z, t) is known from the data and the zeroth order solution. By

adopting the same procedure as for the zeroth order model we can find Θ0
1(z, t),

i.e., integrating (15b) with respect to r and using the boundary condition at r = R
to eliminate Θ2,r. We derive

1

St
Θ0

1,t − Θ0
1,zz =

2

R
(R′Θ0

1,z − Θ0
1) + F1, 0 < z < S0(t), t > 0,(29a)

Θ0
1,z(0, t) = δΘ0

1(0, t), t ≥ 0,(29b)

Θ0
1(S0(t), t) = −S1(0, t)Θ0,z(S0(t), t), t ≥ 0,(29c)

S′
1(r, t) =

(
Θ0

1,z + S1Θ0,zz + r2F2

)
(S0(t), t), S1(r, 0) = 0, t > 0,(29d)

where

F1 = −R2

2

(
1

St
Θ1

1,t − Θ1
1,zz

)
+ 2R(R′Θ1

1,z − Θ1
1) −

R′2Θ0

R
, F2 = Θ1

1,z +
4(Θ1

1)
2

Θ0,z
,

(29e)

and r appears as a parameter in (29d).
This first order problem (29) has the same structure as the zeroth order prob-

lem (19) but is inhomogeneous; i.e., the zeroth order solution provides the forcing
(or heating). A further key difference is in the coupling with the crystal-melt inter-
face position S1. Equation (29c) provides the lower boundary condition for Θ1 and
S1 advances through (29d), which is consequently a first order quasi-linear partial
differential equation.
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In general, the coupled system (29) must be solved numerically. For the pseu-
dosteady case, the formula can be simplified as follows. From the definition of Θ1

1 and
using the pseudosteady condition Θ0,zz = −4Θ1

1, expressions (29a) and (29d) reduce
to

(30)

Θ0
1,zz +

2

R
(R′Θ0

1,z −Θ0
1) =

1

4
(2R′ + 5R′R′′ −RR′′′)Θ0,z −

1

4R
(2R− 4R′2 + 5RR′′)Θ0

and

(31)

S′
1(r, t) = Θ0

1,z +
2

R
(1 −R′Θ0,z)S1 +

r2

2R2

(
−3R′ + (RR′′ + R′2 + R)Θ0,z +

2

Θ0,z

)
,

where the right-hand side of (31) is evaluated at z = S0(t) and r appears as a param-
eter.

3.2.1. Constant radius crystals. Since R(z) = R0, expression (30) reduces to
Θ0

1,zz − k2Θ0
1 = −Θ0/2 with k2 = 2/R0. Solving for Θ0

1 and using (27)–(28) one finds

Θ1(r, z, t) =
cosh kz

cosh kS0

[
−Γ(S0) − S0

1Θ0,z(S0)
]
+ Γ(z) − 1

4
k2r2Θ0(z)

with S0
1 = S1(0, z) and

Γ(z) =
1

2k

∫ z

0

Θ0(ξ) sinh k(ξ − z) dξ.

When δ = 0, Γ(z) = −z sinh kz/4k cosh kS0 yields

Θ1(r, z, t) =
1

4k

cosh kz

cosh kS0

(
S0 tanh kS0 − z tanh kz − 4k2S0

1 tanh kS0 − k3r2
)
.

S1 can be obtained by (29d).

3.2.2. Conical crystals. Since R(z) = R0 + αz, and from (20) Θ1
1 = (αΘ0,z −

Θ0)/2R = −Θ0,zz, we find

Θ1
1,z = −

(
3α2

2R2
+

1

2R

)
Θ0,z+

3α

2R2
Θ0, Θ1

1,zz =

(
6α3

R3
+

3α

R2

)
Θ0,z−

(
6α2

R3
+

1

R2

)
Θ0.

Consequently, (30) reduces to

(32) Θ0
1,zz +

2α

R
Θ0

1,z −
2

R
Θ0

1 =
α

2
Θ0,z +

1

2R
(2α2 −R)Θ0,

and we see that even for the pseudosteady cone, numerical methods will have to be
used in general.

Further discussion is deferred to section 5. In the following we turn our discussion
to thermal stress inside the crystal.

4. Thermal stress. The thermal stress experienced by the crystal during its
growth leads to the generation of structural defects in the crystal [31]. If we want
to eliminate these undesirable defects, then one must control the thermal stress. We
begin with a brief introduction to the case of an isotropic body. Although InSb is
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anisotropic with respect to its elasticity, this will be dealt with in a subsequent section.
Fundamentals can be found elsewhere [21, 28].

From the elements of the stress tensor the characteristic amount of stress at a
particular position can be described by the von Mises stress σVM with the relationship

(33) 2σ2
VM = (σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2,

where σ1, σ2, σ3 are the eigenvalues of the stress tensor. Being a function of the
eigenvalues, the von Mises stress is invariant under coordinate transformations.

For a given temperature field, the resulting set of thermoelastic equations for the
displacement vector are coupled, and a numerical method will be needed to solve the
displacements before thermal stress can be computed. It is instructive to consider the
special case where the displacement occurs in one of the three directions, due to the
nature of temperature variation. In the following, we will address the thermal stress
that arises from temperature variation in the radial direction, as this is the dominant
contribution.

4.1. Thermal stress due to radial temperature variation. We assume the
displacement vector is of the form �u = 〈u(r), 0, 0〉 and converting to nondimensional
units u satisfies

∂

∂r

[
1

r

∂

∂r
(ru)

]
= ε

(1 + ν)

(1 − ν)

∂Θ1

∂r
, u(0) < ∞, σrr(R) = 0,

where ν is the Poisson ratio. The condition u(0) < ∞ is due to the axisymmetry, and
since the crystal surface is unstressed, σrr(R) = 0. The stress has been nondimen-
sionalized by α0ΔTE/(1 − ν), E is the Young’s modulus, and α0 is the coefficient of
thermal expansion. We have assumed here that Θz � 0 since we want to focus on the
sole effect of any radial temperature variations. The solution satisfying the boundary
conditions is

u(r) = ε
(1 + ν)

(1 − ν)

[
1

r

∫ r

0

Θ1(s)s ds + (1 − 2ν)
r

R2

∫ R

0

Θ1(s)s ds

]
,

and using (27), the corresponding nontrivial stresses are

σrr = ε

[
1

R2

∫ R

0

Θ1(s)s ds−
1

r2

∫ r

0

Θ1(s)s ds

]
=

1

4
εΘ1

1

(
R2 − r2

)
,(34a)

σθθ = ε

[
1

R2

∫ R

0

Θ1(s)s ds +
1

r2

∫ r

0

Θ1(s)s ds− Θ1(r)

]
=

1

4
εΘ1

1

(
R2 − 3r2

)
,(34b)

σzz = ε

[
2

R2

∫ R

0

Θ1(s)s ds− Θ1(r)

]
=

1

2
εΘ1

1

(
R2 − 2r2

)
(34c)

with σzz modified using St. Venant’s principle.
Using (33) to compute the von Mises stress gives

(35) σVM(r, z, t) =
1

4
ε
∣∣Θ1

1

∣∣R2

[
1 − 4

( r

R

)2

+ 7
( r

R

)4
]1/2

.

The object in the square brackets is a shape factor, and it ranges from a value of
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√
3/7 at a radius of r =

√
2/7R(z) to a maximum value of two at the outer edge of

the crystal. For
√

4/7R(z) < r ≤ R(z) this factor is greater than one.
Remark 1. From (19a) and (28), Θ1

1 = (Θ0,t/St−Θ0,zz)/4, which reduces to
|Θ1

1| = |Θ0,zz|/4 in the pseudosteady limit. This generalizes the classical result that
the stress level is a characteristic of the concavity of the temperature in the axial
direction [22, 34]. The stress is also linearly proportional to the Biot number ε indi-
cating that an increase in the crystal radius will also increase the stress level, other
conditions being equal. It also indicates that the increase of radius can be offset by
reducing the heat transfer coefficient hgs, suggesting that a possible way to reduce
the stress is by changing the local heat flux from the crystal lateral surface.

Remark 2. Also from (28), it is clear that there are two components in the
expression for Θ1

1. Therefore both the temperature gradient and the crystal profile
are important for stress reduction. Since circular cylindrical shape is normally adopted
for the growth of more common crystals such as silicon, the shape effect has not been
discussed much in the literature. However, for crystals such as InSb with relatively
low resistance to thermal stress, finding the right shape is often part of an important
strategy for growing defect-free crystals. We will address this issue again in later
sections.

Remark 3. As other stresses, such as the total resolved stress, are often con-
sidered more relevant for causing defects, it is important to point out that the same
characteristics remain for different representations of the thermal stress or for crystals
being pulled in different directions. These issues will be the topic of the following two
subsections.

4.2. Resolved stress. InSb crystallizes in a zincblende or 43m structure. The
structure description is two interpenetrating face-centered cubic (f.c.c.) sublattices
of In and Sb separated by the displacement vector a〈1, 1, 1〉/4. Each In (Sb) atom
is tetrahedrally coordinated with an Sb (In) atom. An alternative description of the
structure is a f.c.c. sublattice of Sb atoms with one-half of the tetrahedral sites filled
with In atoms. The nearest neighbor distance is

√
3a/4 and the lattice parameter is

a = 0.6476 nm.
The preferred method of dislocation generation in InSb, as in all III-V semicon-

ductors, is through the generation of slip defects, in particular the {111}, 〈110〉 slip
system [19]. This system consists of four glide planes within which atoms can slip
in one of three directions. For example, in the (111) plane the slip directions are
[101], [110], and [011]. Figure 4 looks down the z-axis of the tetrahedral structure of
the crystal and shows each of the 12 permissible glide directions classified into five
different categories.

The amount of stress in a particular slip direction �g within a given glide plane with
normal �n is known as the resolved stress, σRS. If one assumes the crystallographic
axes coincide with the coordinate axes, then σRS is computed by finding

(36) σRS = �gTQσQT�n,

where Q is the coordinate transformation matrix that takes (r, θ, z) → (x, y, z) and
σ is the stress tensor in the (r, θ, z) coordinates. In summary, the five categories
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Fig. 4. Illustrated are each of the 12 slip directions in the {111}, 〈110〉 slip system. The roman
numerals refer to the functional form of the stress in the direction of the appropriate slip plane.

illustrated in Figure 4 yield1

σI
RS = − 1√

6
(σrr − σθθ) cos 2θ,(37a)

σII
RS =

1√
6
[(σzz − σθθ) − (σrr − σθθ)(sin

2 θ + sin θ cos θ)],(37b)

σIII
RS = − 1√

6
[(σzz − σθθ) − (σrr − σθθ)(sin

2 θ − sin θ cos θ)],(37c)

σIV
RS = − 1√

6
[(σzz − σθθ) − (σrr − σθθ)(cos2 θ + sin θ cos θ)],(37d)

σV
RS =

1√
6
[(σzz − σθθ) − (σrr − σθθ)(cos2 θ − sin θ cos θ)].(37e)

Plastic deformation of the crystal occurs if the stress in any of the 12 slip directions
exceeds the critical resolved shear stress, σcrss. To leading order, the actual density
of dislocations suffered by the crystal is proportional to the total excess stress at any
given point within the crystal. In this sense, an estimation of where dislocations are
likely to occur is given by the distribution of the total absolute stress:

(38) |σtot| = 4
∣∣σI

RS

∣∣ + 2
(∣∣σII

RS

∣∣ +
∣∣σIII

RS

∣∣ +
∣∣σIV

RS

∣∣ +
∣∣σV

RS

∣∣) .
An additional complication is that, in general, the elastic constants depend on the
solidification direction since the thermal and crystallographic axes are not aligned.
However, for crystals that belong to the cubic classes this does not play a role [2].

1Note: θ = −ϕ, where ϕ is the angular coordinate used by Jordan, Caruso, and von Neida [19].
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4.3. Crystal extraction in an arbitrary direction. The previous subsection
supposes the crystal is extracted from the melt in a direction coincident with the
crystallographic axes. If there is a misalignment between the frame defined by the
crystallographic axes of the unit cell and the frame with its z-axis coincident with the
solidification direction, then a coordinate transformation is required to align �n and �g.
These directions must change because they are with respect to the crystallographic
axes and not the the temperature field that determines the stress tensor. Let Uvp

denote a coordinate transformation, depending on the pulling direction, that takes
vectors in the crystallographic frame to the solidification frame. The total resolved
stress of the {111}, 〈110〉 slip system becomes

(39) |σtot| =

12∑
i=1

∣∣∣�gTi UT
vp
QσQTUvp�ni

∣∣∣ ,
where the symmetry in expression (38) has been broken.

5. Numerical results and discussion. We first discuss the temperature so-
lutions for the decoupled growth; i.e., the heat flux from the melt to the crystal is
assumed a known (constant) value. In particular, we compare the pseudosteady

(
(19),

(29) with Θ0,t = Θ0
1,t = Θ1

1,t = 0
)

and the unsteady solution (12). Even though the
Stefan number is not much bigger than unity, the results show that the pseudosteady
solutions are in good agreement with the unsteady calculation. This indicates that the
thermal stress can be reasonably estimated using the pseudosteady solution, which
greatly simplifies the calculation. The case for coupled growth is also investigated,
and we show the transient influence of the melt is only important towards the end of
the growth. During the growth, the heat flux from the melt to the crystal changes
slowly, suggesting that the temperature solutions for the decoupled case are good
approximations. The thermal stress is computed based on the pseudosteady solution
using the decoupled growth condition for simplicity.

Table 2 displays the various quantities used in the simulation and not found in
the previous table.2

5.1. Temperature solutions.

5.1.1. Decoupled growth. In this section we attempt to justify the pseu-
dosteady approximation. To begin, we assume γ = δ = 0, decoupling the crystal
from the melt in the crucible. Figure 5 compares the time dependence of the position
of the crystal-melt interface S(r, t) using (12) (the unsteady case) with its zeroth order
approximation S0(t) using (20), (19b)–(19d) (the pseudosteady case). To determine
the influence of both the crystal profile and the amount of heat transfer, a cylindrical
and conical profile were assumed and, for each profile, two values of ε (ε1 = 0.0066,
ε2 = 0.026) were considered. Using only the zeroth order approximation, the inter-
face position is uniformly overestimated with the pseudosteady approximation, and
the amount of overestimate is proportional to ε. The largest relative difference is
about 10% and occurs at the end of the growth for a cylindrical crystal with the
largest value of ε.

The radial dependence of the interface can be estimated with the first order per-
turbation, S0(t)+ εS1(r, t). Figure 6 compares this approximation with the radial de-

2hsl and hcl are based on estimated boundary layer thicknesses of 2.5 mm and 1.8 mm, respec-
tively. The former is due to an Ekman layer (rotations of crucible and the crystal at 5 rpm) and the
latter is due to natural convection (ΔT = 1 K, ν = 3.3 × 10−7 m2/s, Grashof number � 6.0 × 106).
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Table 2

Remaining liquid and growth parameters used in the simulations.

Data Symbol Value
Growing properties

Ambient temperature Ta 600 K
Seed radius R0 0.005 m
Seed length Z0 0.03 m

Crucible depth Z̃c 0.0875 m

Crucible radius R̃c 0.0875 m
Thermal expansion α0 5.5 × 10−6 /K

Liquid properties at T = Tm

Density ρl 6.47 × 103 kg/m3

Thermal conductivity kl 9.23 W/m K
Heat capacity ρlcl 1.7 × 106 J/m3 K

Heat transfer coefficients
Solid-liquid hsl 3700 W/m2 K
Gas-liquid hgl 2 W/m2 K
Crucible-liquid hcl 5230 W/m2 K
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Fig. 5. Time evolution of S0(t) for the pseudosteady approximation compared with S(0, t). For
both values of ε and both crystal profiles S0(t) closely approximates S(0, t).

pendence obtained by solving the unsteady equations at the end of the crystal growth,
t = tf . In both the case of a cylindrical and a conical crystal the growth interface is
convex (viewed from inside the crystal). For the conical crystal the interface is flatter
even though the curvature grows with time for both cases. The pseudosteady results
closely track the unsteady solution with a maximum relative difference less than 5%.

As a final comparison, Figures 7 and 8 display the predicted thermal profile for
the cylindrical and conical crystals, respectively. The crystals are displayed in the
physically correct aspect ratio and with their respective solid-liquid interface. It can
be seen that the pseudosteady and unsteady solutions are in close agreement.

From the previous results it is clear that without any coupling from the melt, the
pseudosteady solution approximates the solution of the fully time dependent Stefan
problem. When one considers coupling the melt in the crucible with the crystal,
the pseudosteady approximation will remain valid if the predicted heat flux from the
melt does not change appreciably over the growth of the crystal. In this case the
temperature and flux of the melt are determined by (13).
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Fig. 7. Nondimensional temperature contours for the cylinder at the end of the growth illus-
trated at the correct aspect ratio.

5.1.2. Coupled growth with melt in the crucible. In this simulation we
solve (19) with a cylindrical seed where γ = γ(t) as determined by (13). In addition,
hgs = 4, δ = 0, and the remaining heat transfer coefficients are listed in Table 2.
Results for a cylindrical and conical crystal pulled from a parabolic crucible

(
z =

Z̃c(r/R̃c)
2
)

are displayed in Figure 9. In both cases the temperature of the crucible
was initially Tc(0) = Tm + 0.046 K (dimensional) and reduced at a constant rate of
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Fig. 8. Nondimensional temperature contours for the cone at the end of the growth illustrated
at the correct aspect ratio.

0.2 K/hr.
On the far left of Figure 9 the grown crystal is illustrated at the physically correct

aspect ratio with the initial and final melt levels. The initial level is chosen so that
25% of the melt remains in the crucible once the crystal achieves its final length.
Growth times for each crystal are indicated on the far right.

The center two images display the time evolution of the crystal temperature with
the pseudosteady position (St → ∞) of the interface indicated with crosses. For the
cylindrical case the initial rapid increase in the radius imprints an echo of the seed into
the thermal field which will increase the stress in the shoulder of the crystal. Such an
effect has recently been described elsewhere [22]. The dashed lines show the solution
if γ = 0. By setting γ constant the growth rate of the crystal becomes essentially
constant rather than accelerating as seen in the coupled case.

The far right shows the growth rate of the interface S′
0(t), the corresponding pull

rate vp(t), and the rate at which the melt drops λ2vm(t). For the cylindrical crystal,
the growth rate rapidly decreases as the crystal shoulder is formed from the initial
seed. This effect is decreased for the conical crystal, leading to a more uniform pull
rate with this profile. As the crucible empties, the melt falls more rapidly, causing the
pulling speed to reduce near the end of the growth. For the cone this is emphasized
as the cross-sectional area increases with time.

Figure 10 illustrates both γ(t) and the components of expression (13) during the
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Fig. 9. Final configuration of the crystal-melt system, thermal fields, and interface speeds for
the coupled system (13) and (19). On the left is the final crystal position in the furnace. The
temperature field is detailed in the center and the interfacial velocities are displayed to the right.
Cylindrical and conical growth are on the top and bottom rows, respectively.

growth cycle for the cylindrical and conical crystal profiles. The flux from the melt
γ(t) is shown to the left of the figure. Changes in the flux are driven primarily by
the chosen rate of change of the crucible temperature and is relatively insensitive to
the crystal profile. In both cases the magnitude of undercooling was � 2 K. A more
sophisticated model that considers the dynamics of the melt is clearly required to
quantitatively estimate any undercooling effects. This research is currently underway.

Even with our very simple model for the melt, two separate growth regimes are
clearly identified. By considering the source of the various heat fluxes acting on the
melt one observes that in the initial states of growth, the heat loss to the ambient gas
Qgl = hgl(Ac −A)(Tl − Tg) and the heat gain from the crucible Qcl = hclAl(Tc − Tl)
are the dominant terms in (13). Once the crucible is cool enough, it becomes the
dominant channel for heat loss, whereas the melt is heated by the solid-liquid interface
at Tm and the decreased heat capacity through volume loss of the melt. The profile
of the crystal changes Qsl = hslA(Tl − Tm) and Qgl, while the shape of the crucible
governs the behavior of Qcl. Qvl = −ρlclTlV

′
l is dictated by the rate of growth.

The nondimensional quantities in Figure 10 are found by dividing the Qi by the
dimensional factor R̃c

2Z̃chgsΔT/R.
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Fig. 10. The nondimensional flux and the heat flux components of expression (13) through the
growth cycle. The various components detailed to the right are discussed in section 5.1.2.

5.2. Thermal stress. For an anisotropic crystal, Young’s modulus E and Pois-
son’s ratio ν depend on the specific orientation of the crystal. However, these values
are invariant within the {111} planes [2]. For InSb one has

E{111} =
4(C11 + 2C12)(C11 − C12)C44

(C11 + 2C12)(C11 − C12) + 2C11C44
= 6.18 × 104 MPa,

ν{111} =
1

3

(C11 + 2C12)(C11 − C12) − 2C44(C11 − 4C12)

(C11 + 2C12)(C11 − C12) + 2C11C44
= 0.364,

where C11 = 6.70 × 104, C12 = 3.65 × 104, C44 = 3.02 × 104 are crystal stiffness con-
stants3 in MPa and, consequently, the dimensional constant for the stress calculations
is α0ΔTE/(1 − ν) � 107 MPa.

Figure 11 shows the stress contours of the von Mises stress for the cylinder and the
cone at the end of the growth corresponding to the pseudosteady results in Figures 7
and 8. For a fixed value of ε the stress in the conical case is about one-half that of the
cylindrical case. Also, increasing ε increases the stress level dramatically. By growing
a conical crystal the stress can be reduced significantly. For a given temperature the
amount of stress at which crystal deformation begins to occur is known as the critical
resolved shear stress, σcrss. In the case of InSb, σcrss varies from 0.245 MPa [25] to
4.90 MPa [6] as the temperature varies from Tm = 798.4 K to 491 K, respectively,
indicating that the conical crystal remains below this critical stress level.

An additional method of reducing the stress level in the crystal is to use the
anisotropic nature of the crystal to our advantage by changing the direction in which
the crystal is solidified. From expression (39) one can see that for a fixed vertical
position in the crystal the total absolute resolved stress is a complicated function of

3The corresponding compliances are S11 = 2.42 × 10−5 MPa−1, S12 = −8.55 × 10−6 MPa−1,
S44 = 3.31 × 10−5 MPa−1.
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Fig. 11. von Mises stress for the pseudosteady cylindrical and conical crystal cases. Isostress
contours are labeled as a percent of the maximum stress (0.176 MPa for ε1 and 0.706 MPa for ε2).

the angular coordinate. Figure 12 shows the stress pattern for a cylindrical crystal
just inside the crystal-melt interface when the crystal is pulled in the directions [001],
[111], [101], and [121] respectively. The temperature field corresponds to values of
hgs = 4, γ = 0, and δ = 0 grown with the pseudosteady approximation. The 〈211〉
directions are preferred growth directions [23]. The other directions are for compar-
ative purposes. Notice that the isostress contours are square for the [001] direction
and hexagonal for the [111] direction, while the [121] direction generates distorted
rectangular isostress curves. If one assumes that the crystal will solidify in a manner
consistent with minimizing the surface stress, then these curves should somewhat ap-
proximate the actual cross-sectional shape of the crystal as it is pulled from the melt.
Clearly the crystal orientation can significantly reduce the stress. However, not all
growth directions are amenable to crystal growth [23]. Because of these other issues,
changes in the growth orientation are more effective at redistributing the stress within
a particular cross-section than reducing the overall magnitude of stress. The issue of
optimizing the growth conditions will be addressed in a subsequent paper.

6. Conclusion. In this study, we present a semianalytical approach for the tem-
perature and thermal stress inside an InSb crystal. The purpose of the paper is
twofold. By identifying the main physical features and using suitable mathematical
models, we have gained useful insights into this complex manufacturing process. In
particular, we have determined the dependence of the crystal stress on the evolving
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Fig. 12. Total resolved stress distribution, computed using (39), for a cylindrical crystal, at the
indicated orientation, just inside the crystal-melt interface at the end of the growth. All reported
stress values are expressed in percent with 100% occurring at the outer edge of a crystal grown in
the [001] direction.

crystal profile. By deriving semianalytical solutions, we have also provided a base that
can be used to search for suitable growth conditions to improve the manufacturing
procedure for all III-V compounds.

An important feature of our approach is that it allows us to derive explicit re-
lationships between the thermal stress and relevant physical and geometrical param-
eters. This is achieved by using an asymptotic expansion of the solution in terms
of the Biot number, characterizing the lateral heat flux. The asymptotic solution is
obtained by solving essentially one-dimensional problems. The results show that the
stress induced by radial temperature variation is related to the size (radius) and the
profile (variation of the radius) of the crystal and heat flux through the side surface.
On the other hand, the influence of the crystal radius on the stress induced by the
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axial temperature variation is much weaker. The heat flux through the side surface is
an important factor for reducing the overall thermal stress inside the crystal. The ex-
plicit nature of the thermal stress allows for a more efficient optimal control approach
for finding better growth conditions, as shown in [15].

The other advantage of our semianalytical approach is that it can be extended to
cases with more complicated models for the melt and gas flows. For example, the effect
of the gas flow on the lateral heat flux between the crystal surface and the gas can
be modeled by a nonconstant heat exchange coefficient hgs. The motion of the melt
can also be modeled by a similar approach, using a boundary layer argument [8, 9] or
by solving the Navier–Stokes equations and temperature equation numerically. These
will be the subject of a subsequent paper.

As pointed out earlier, we have assumed that the pulling rate can be adjusted
to grow a crystal with a desirable shape. In practice, we may need to consider the
dynamics and stability of the radial motion of the three-phase triple point. Models and
computations have been carried out to capture the motion of the three-phase contact
point [7, 32] and can be incorporated with the current model in a straightforward
fashion. This work is currently underway.

Finally, we note that our study has its limitations and there is room for improve-
ments and future investigations. For example, a nonuniform heat flux from the melt
will introduce radial variation in the zeroth order temperature solution. As a result,
the thermal stress will be determined not only by the axial gradient of the zeroth
order solution but its radial variation as well. However, this radial variation is likely
to be small, from our own observations and others, and an asymptotic solution can
also be obtained, as indicated in [20]. Furthermore, we have not discussed the validity
of the plane strain assumption. We believe that an asymptotic argument similar to
that used for the temperature can be employed to derive the plane strain solution as
part of the asymptotic series. We plan to address this issue also in a future study.
Finally, the crystal grown in practice is not axisymmetric. It would be of practical
interest to investigate the effect of anisotropy. Study is currently underway for a
weakly anisotropic crystal.

Appendix: A simple model for the melt temperature. Starting with di-
mensional variables, we consider crystal growth in an axisymmetric setting where the
rate of growth is small. We assume that the melt (liquid) in the crucible is well mixed
and the temperature of the melt, Tl(t), is uniform in space except in the thin lay-
ers near the crystal-melt and melt-ambient gas interfaces. We also assume that the
ambient gas is well mixed and the temperature of the gas is a constant Tg. Further-
more, we will neglect the shape of the meniscus and assume that the crystal-melt and
melt-gas interfaces are flat.4 Therefore by adjusting the pulling speed vp, the posi-
tions of the crystal-melt and melt-gas interfaces can be described by a single function
z = S(t).5 Finally, we assume that the crystal radius R(z) varies slowly in the z
direction, |Rz| � 1. The coordinate system is fixed to the top of the growing crystal
at z = 0, as described previously.

Figure 13 shows the three surfaces through which the melt can transfer heat

4For InSb crystals under consideration here, the typical length scale is R = 0.03 m, the surface
tension coefficient between the melt and gas is σgl = 0.434 N/m, and the melt density is ρl =

6.47 × 103 kg/m3. The Bond number is Bo = ρlgR
2/σgl � 132 � 1. Thus the meniscus is

dominated by the gravity effect and the meniscus changes shape only near the three-phase contact
point with a small capillary rise.

5The flat interface assumption allows one to drop the explicit r dependence of S(t).
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Fig. 13. For a small time interval Δt the new crystal extends a distance S′(t)Δt beyond the
original interface location (dashed-dotted line). The corresponding drop in the melt is vmΔt (dashed
line), and to realign the melt-gas interface and the crystal-melt the crystal must be extracted an
additional distance of vpΔt (solid line).

energy. These are denoted as A = πR2, the area of the crystal-melt interface; Ac =
πR2

c , the cross-sectional area of the crucible (Ac − A is the area of the melt-gas
interface); and Al, the surface area of the crucible in contact with the melt. Continuing
to refer to the figure, conservation of mass implies that the rate at which the melt-gas
interface drops due to the change in density upon solidification is

(40) vm(t) =
ρsA

ρlAc
S′(t).

To ensure that the crystal-melt interface remains at the surface of the liquid the
crucible is dropped at an optimal pull rate

(41) vp(t) = (S′ − vm)(t) =
ρlAc − ρsA

ρlAc
S′(t).

If the actual pull rate of the crystal exceeds vp by a moderate amount, then the surface
tension of the melt will cause the radius of the crystal to decrease. Similarly, pulling
at a rate slower than vp will cause the radius to increase.

Using these velocities, the position of the crystal-melt interface is S = Z0+uw+up,
where

uw(t) =

∫ t

0

vm(τ) dτ, up(t) =

∫ t

0

vp(τ) dτ(42)

are the displacements due to the loss of melt during the solidification and the growth
of the crystal, respectively. The top of the crystal is fixed at z = 0.

During the growth period we assume that the heat flux from the melt to the
crystal is given by

(43) ql = hsl(Tl − Tm).
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As a result the heat balance inside the melt yields

d

dt
(ρlclTlVl) = −qlA− hgl(Ac −A)(Tl − Tg) + hclAl(Tc − Tl),(44)

where Vl is the time dependent volume of the melt, and Tc is the temperature of the
crucible. The last term in (44) is the heat flux from the crucible to the liquid and is
assumed to be a control parameter with Tc acting as the control.

For simulations in section 5.1.2 the crucible was assumed to be parabolic and
filled to the extent that once the crystal reaches its final mass ρsVxtal and growth
stops, there is a given proportion, p, of melt mass left in the crucible. As a result,
Rc(ξ) = R̃c(ξ/Z̃c)

1/2, 0 ≤ ξ ≤ Z̃c, and the initial depth of the melt Zc0 is determined
with the condition

(45)
ρs
ρl

Vxtal = (1 − p)

∫ Zc0

0

πR2
c(ξ) dξ.

Since the shape of the crucible is known, Al and Vl can be obtained as

Al(t) =

∫ Zc0−uw(t)

0

2πRc(ξ)

√
1 + R′2

c(ξ) dξ, Vl(t) =

∫ Zc0−uw(t)

0

πR2
c(ξ) dξ(46)

computed with respect to a local coordinate system fixed to the bottom of the crucible.
A nondimensionalized version of (44) is obtained by substituting the characteristic

radius R̃c and depth Z̃c for the crucible so that

Rc = R̃cR̂c, A = R
2
Â, Ac = R̃2

cÂc, Al = R̃cZ̃cÂl, Vl = R̃2
cZ̃cV̂l.

Letting Tl = Tg +ΔTΘl and Tc = Tg +ΔTΘc and defining λ = R/R̃c, μ = R̃c/Z̃c, φ =
ρlcl/ρscs one obtains

(47a)
φ

λ St

d

dt̂

[(
Tg

ΔT
+ Θl

)
V̂l

]
= −μλ2Â

hsl

hgs
(Θl−1)−μ

hgl

hgs
(Âc−λ2Â)Θl+

hcl

hgs
Âl(Θc−Θl)

with Θl(0) = 1 and a nondimensional heat flux given by

(47b) γ =
ql,nR

ε1/2ksΔT
= ε1/2

hsl

hgs
(Θl − 1).

When commencing, the growth of the seed is slowly dropped until it contacts the
melt surface and a meniscus is supported. Once the meniscus stabilizes and the seed
reaches a thermal equilibrium with the melt and the crystal, the seed is extracted
and the furnace temperature is slowly decreased [23]. Assuming a cylindrical seed of
length Z0 and radius R0 and using expression (22) one finds an initial interface speed
of

(47c) S′
0(0) = k

k sinh(kZ0) + δ cosh(kZ0) − δΘch

k cosh(kZ0) + δ sinh(kZ0)

with k2 = 2/R0. The initial crucible temperature is chosen so that Θ′
l(0) = 0 and

from (47a) one has

(47d) Θc(0) =

[
1 + μ

hgl

hcl

(
Âc − λ2Â

Âl

)
+

φ

λ St

hgs

hcl

1

Âl

dV̂l

dt̂

(
Tg

ΔT
+ 1

)]
(0).
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To simulate the cooling of the furnace the crucible temperature was dropped at a
constant rate of 0.2 K/hr for all simulations.

Nondimensional versions of the interface speeds (40)–(41), displacements (42),
initial depth condition (45), and geometrical factors (46) are derived using the sub-
stitutions

Zc0 = Z̃cẐc0, ε1/2up = Rûp, ε1/2uw = λ3R̃cûw.
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