Continuity – Limits and Continuity
Continuity A function \(f(x)\) is said to be continuous at a point \(a\) in its domain if the following three properties hold. \(\displaystyle \lim_{x \to a} f(x)\) exists. This takes three steps to show in itself. \(f(a)\) has to exist, \(\displaystyle \lim_{x \to a} f(x) = f(a)\). Continuity connects the behaviour of a function in … Read moreContinuity – Limits and Continuity